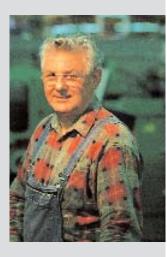
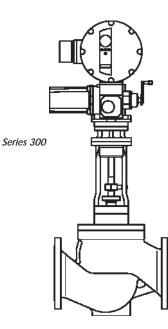


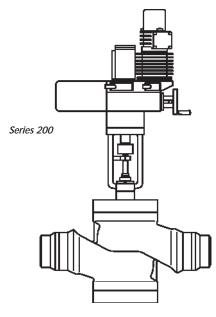
Control Valves, Desuperheaters, Steam Conditioning Valves

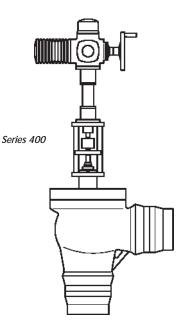
Excellence is our standard



Holter Regelarmaturen GmbH & Co. KG, founded in 1967, offers an entire range of products for use in industry, power plants and process technology. Also known as HORA, the company designs and produces valves, pump recirculation valves, special valves for use in power plants, as well as electric and pneumatic actuators.


Long term experience has made the independent family-owned company from Schloss Holte-Stukenbrock into an international partner with leading boiler and power plant manufacturers and also for measurement and control companies.

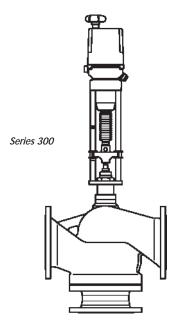

Today's position of the company in the marketplace is the result of the successful combination of innovative ability, continuity and reliability.

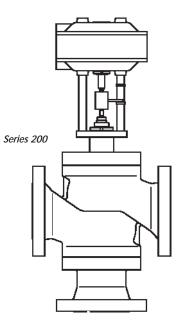


- 4–5 Single seat and three way control valves
 - 6 Feedwater control valves
 - 7 Multi-stage control valves Injection control valves
 - 8 Steam pressure reducing valves
 - 9 Steam conditioning valves
- 10 Desuperheaters
- 11 Pump recirculation valves
- 12 Electric linear actuators
- 13 Pneumatic diaphragm actuators
- 14 Special design
- 15 Quality management
- 16-19 Hora Power Technology Service
 - 20 Major references

Single seat control valves

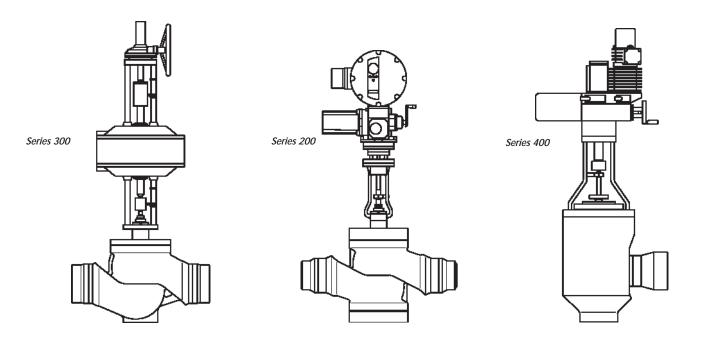
Application	Typical for liquid and gas control (water, steam,
	oil, gas)
Body	Heat resisting and high temperature resisting
	cast steel as well as stainless steel
Connection	Flanged or buttweld ends
Actuator	Electric, pneumatic or hydraulic


Series	Size	ANSI Class	Body design
300.01	¹ / ₂ " – 24"	150 – 300	Globe valve
300.05	¹ / ₂ " – 16"	400 - 900	Globe valve
300.50	6″	1500	Globe valve
200.03	2 ¹ /2″ – 16″	150 – 900	Angle style
200.07	2″ – 12″	1500	Angle style
400.16	1″ - 16″	150 - 300	Angle style
400.16	4" - 8"	400 900	Angle style
400.16	1″ - 3″	1500	Angle style


NPS 1" \cong 25 mm = DN 25

HORA maintains a customer oriented stockholding, which on closer examination says a good deal about the company's service-mindedness. Discussions with customers have repeatedly shown this system of material availability to be a key factor for HORA's competitiveness in international markets.

Three way valves

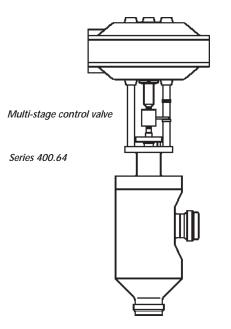


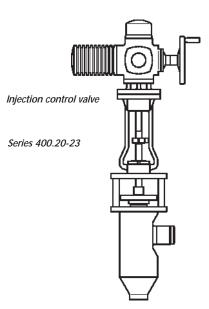
Application	Mixing or diverting valve for liquid and gas
	control (water, steam, oil, gas)
Body	Heat resisting and high temperature resisting
	cast steel as well as stainless steel
Connection	Flanged (buttweld ends are not typically
	recommended due to installation difficulties.
Actuator	Electric, pneumatic or hydraulic

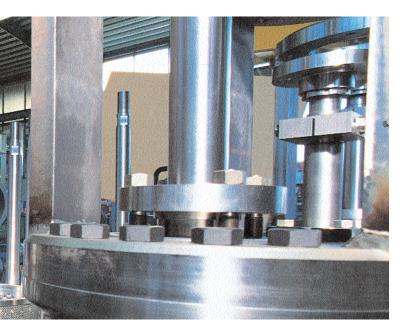
Series	Size	ANSI Class
300.02	1/2" - 24 "	150 – 300
300.06	1/2" - 16 "	400 - 900
200.04	2 ¹ / ₂ " - 16"	150 – 900
200.08	2" - 12"	1500
		0.5

NPS 1" ≅ 25 mm = DN 25

Feedwater control valves


Application	Feedwater control valve for start up and main- feedwater control. These two functions are integrated in the combined feedwater control
	valve. Our delivery range includes also separate control valves.
Connection	Flanged or buttweld ends
Actuator	Electric, pneumatic or hydraulic



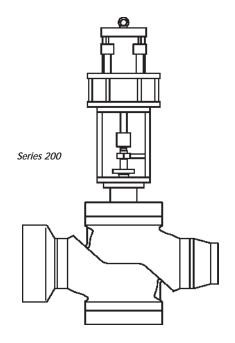

The assembly and testing of industrial valves, that weigh tons calls for millimetre precision and finger-tip feeling – as in these eight turbine bypass valves for a power plant in India. Complicated function tests and final approval testing over several days face the assembly personnel with ever new challenge.

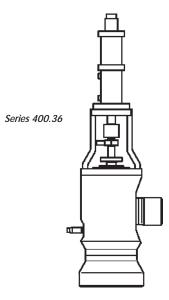
Series	Size	ANSI Class	Body design	Body	Description
300.73	2 1/2" - 12"	400 - 900 (1500)	Globe valve	Cast steel	Compliand two (Chart we and main foodwater combra)
500.75	2 /2 - 12	400 - 900 (1500)	Gibbe valve	Casi sieer	Combined type (Start up and main feedwater control)
200.72	2 ¹ / ₂ " – 12"	1500	Globe valve	Cast steel	Combined type (Start up and main feedwater control)
400.74	2 ¹ / ₂ " – 12"	acc. to design data	Angle or Z-style	Forged steel	Combined type (Start up and main feedwater control)
400.30 - 33	2 1/2" - 12"	acc. to design data	Angle or Z-style	Forged steel	Main feedwater control
6	NPS 1″ ≅ 25 mi	3	Angle of 2-style	Torgea sieer	

Multi-stage control valves Injection control valves

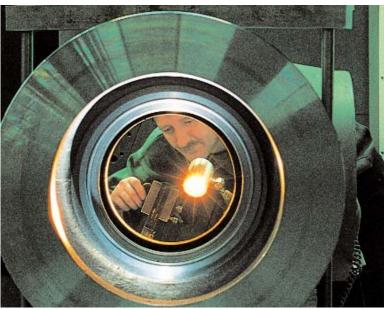
Multi-stage control valve

Application	The multi-stage control valve is typically used
	for throttling high pressure while avoiding
	cavitation.
	This is realized by the maximum 5-stage parabolic
	plug.
Connection	Flanged or buttweld ends
Actuator	Electric, pneumatic or hydraulic


Injection control valve

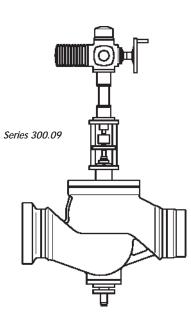

Application	Cooling water control for steam desuperheaters
	and steam conditioning valves.
Connection	Flanged or buttweld ends
Actuator	Electric, pneumatic or hydraulic

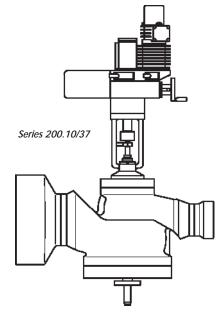
Series	Size	ANSI Class	Body design	Material
400.64	2" - 8"	400 – 2500	Angle or Z-style	Forged steel
400.20 - 23	¹ / ₂ ″– 5″	400 - 2500	Angle or Z-style	Forged steel

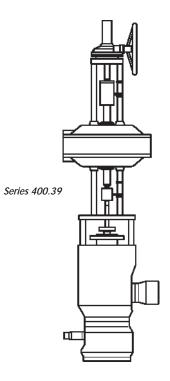

NPS 1" ≅ 25 mm = DN 25

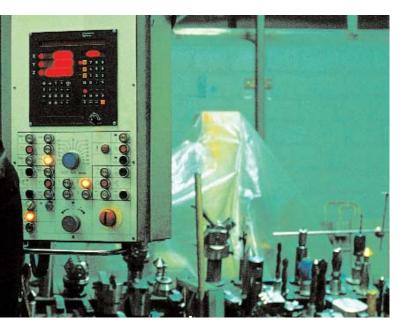
Steam pressure reducing valves

Steam pressure reducing valves are used
primarily in power plants and industrial plants
for steam control and pressure reducing. Multi-
stage pressure reducing and outlet extension in
accordance to the pressure drop.
Flanged or buttweld ends
Electric, pneumatic or hydraulic

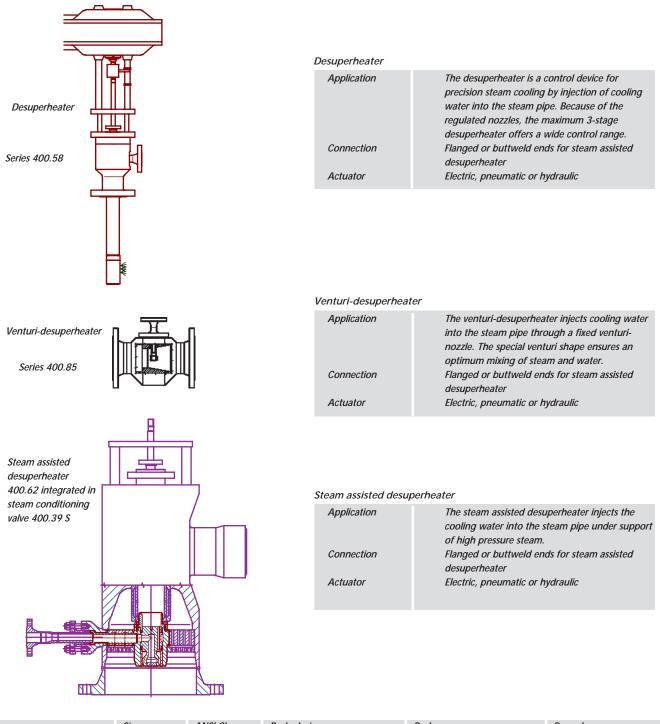



High-pressure body undergoing precision work with bore machining. Forged steel is usually used here.


Series	Size	max. size of outlet extension	ANSI Class	Body design	Material
200.03	2 ¹ / ₂ " – 16	64″	150 – 900	Globe valve	Cast steel
200.07	2″ – 12	64″	1500	Globe valve	Cast steel
200.35	6″ – 16″	64″	150- 900	Globe valve	Cast steel
400.36	2″ - 16″	64″	acc. to design data	Angle or Z-style	Forged steel

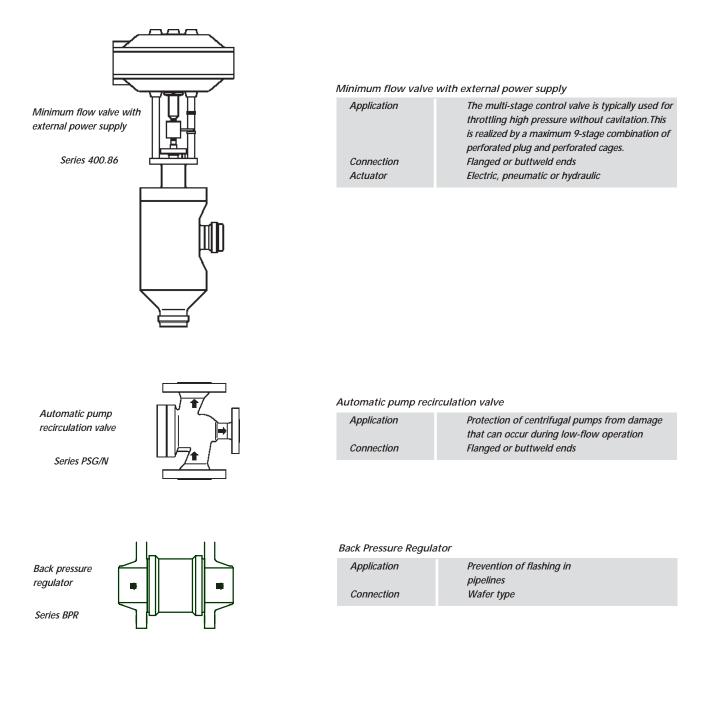

NPS 1" \cong 25 mm = DN 25

Dampfumformventile / Steam conditioning valves



Application	Steam pressure reducing and cooling in one valve. Cooling water is injected in proportion to the steam flow volume, thus ensuring optimum results. The multi-stage, low-noise design is available as a globe or angle style valve.
Connection	Flanged or buttweld ends
Actuator	Electric, pneumatic or hydraulic

Series	<i>Siz</i> e	NPS max. outlet extension	ANSI Class	Body design	Body
300.09	2" - 24"	64″	150 – 300	Globe valve	Cast steel
300.09	2″ – 16″	64″	400 - 900	Globe valve	Cast steel
200.10/37	<i>2 ¹/₂"</i> – <i>16"</i>	64″	150 - 900	Globe valve	Cast steel
200.10	2" - 12"	64″	1500	Globe valve	Cast steel
400.39	2" - 16"	64″	acc. to design data	Angle or Z-style	Forged steel

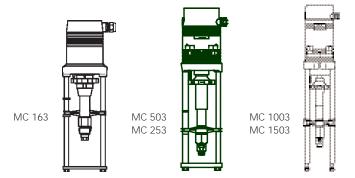

Desuperheaters Venturi-desuperheaters Steam assisted desuperheaters

Series	Size	ANSI Class	Body design	Body	Remark
400.58	1″ – 2/3″	300 - 2500	Angle style	Forged steel	max. kvs 10.66
400.62	6″ – 12″	150 – 900		Forged steel	max. 85 t/h water
				-	
400.85	2" - 4"	150 - 900	Straight way	Forged steel	
			•	•	

NPS 1" ≅ 25 mm = DN 25

Minimum flow valves with external power supply Automatic pump recirculation valves Back pressure regulators

Series	Size	ANSI Class	Body design	Body
400.86	2" - 8"	400 – 2500	Angle or Z-style	Forged steel
	2// 10//	150 1500	Three way yok	Cost steel
PSG/N	2" - 10"	150 – 1500	Three way valve	Cast steel
BPR	2" - 12"	150 – 1500	Straight way	Forged steel
DrK	2 - 12	150 - 1500	Straight way	ruigeu sieei


NPS 1" \cong 25 mm = DN 25

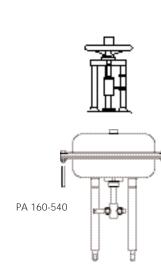
Actuators

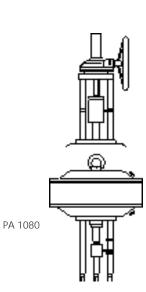
MC 163, MC 253, MC 503

max. 60 mm
24 VAC / 24 VDC or 230 VAC
3-point
Y = 0 10 VDC, 2 10 VDC
0 20 mA, 4 20 mA
$X = 0 \dots 10 VDC$
IP 54
115 VAC
Output signal X = 0 20 mA, 4 20 mA
Position switch unit
Enclosure protection IP 65

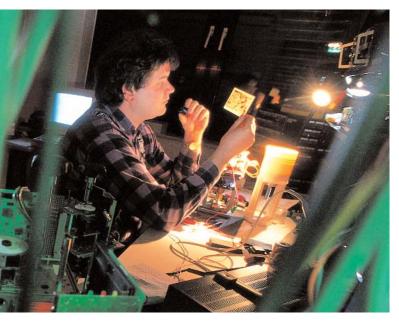
Linear actuator	Actuating thrust	Actuating time
MC 163	1,6	6, 4
MC 253	2,5	5, 2,5
MC 503	5,0	5, 2,5

MC 1003, MC 1503


Stroke	max. 80 mm
Power supply	24 VAC / 24 VDC or 230 VAC
Input signal (adjustable)	3-point
	Y = 0 10 VDC, 2 10 VDC
	0 20 mA, 4 20 mA
Output signal	X = 0 10 VDC
Enclosure protection	IP 54
Accessories	115 VAC
	Output signal X = 0 20 mA, 4 20 mA
	Position switch unit
	Enclosure protection IP 65


Linear actuator	Actuating thrust	Actuating time (adjustable)
MC1003	10	1
MC1503	15	2




Our actuators with microcontroller can be adjusted in situations to meet all kinds of control and regulation requirements. Through automatic selfcalibration and variable adjustment, they are suitable for universal application.

Pneumatic diaphragm actuators

HORA performs all aspects of development work all the way to the serial production phase in its own development laboratory – from mechanics to electronics.

Operating pressure	Maximal 6 bar
Mode of operation	Optionally spring to close/open
Special accessories	Manual adjustment on top, pneumatic or electro-
	pneumatic positioner, blocking valve, booster,
	solenoid valve, attachment set with limit
	switches, quick venting screw, outlet throttle.

Pneumatic diaghragm actuator	Diaphragm area	Stroke
PA-N 160	160	20
PA-N 280	280	20/30
PA 540	540	30/50
PA 1080	1080	60/80
PA 2160	2160	60/80

Example of a tubine-bypass stop and control valve

A turbine bypass system permits operation of the boiler independently from the steam turbine during start-up, commissioning, turbine trip (shut down) and load alternations. It gives a higher plant availability and operational flexibility over all different operating conditions. The start-up time under cold, warm and hot conditions is reduced. A turbine bypass system is in operation until desired steam conditions from metal temperatures of rotor and casing of the turbine are matched. This method reduces the solid particle erosion to the turbine also, since the loss of material from the boiler internals most likely occurs during start-up. After a load rejection of the turbine the bypass valves operate the boiler at an optimal standby load and avoid a boiler trip. They equal the difference between the steam generator and the turbine flow. It is a big advantage that commissioning of the boiler can be carried out toally independent of the turbine. Boiler trials that are usual when commissioning the firing system are performed without stressing the turbine unnecessarily.


HORA is able to carry out all test procedures and approvals

With emphasis on assuring safety.

At HORA, quality does not come from testing but is built in from the start by highly qualified personnel. "Measuring what is measurable and making measurable what is not measurable". Galileo's precept has been absorbed into the flesh and blood of all the people at HORA. The basis for this are DIN EN ISO 9001:2000, the european directive 97/23/EC for pressure equipment and KTA 1401, i.e. the certification as an approved subsupplier for valves with application in nuclear power plants. The quality management system is geared to all the different approvals that may be required worldwide: TRD, AD-2000, ASME, Indian Boiler Rules (IBR), GOST and so on.

At the heart of quality testing is monitoring of the dimensions – for which the systematic and cyclical inspection of all measuring and testing instruments is an important precondition.

HORA is able to carry out all test procedures and approvals required for the production of control and special valves. In the course of production, more than eleven test procedures may be used.

Your problem areas are as unique as your power station.

The patent recipe to prevent all problems is not financially viable. The intelligent, individual mix of preventative measures and help in emergencies is what is required. Some examples of our range of services:

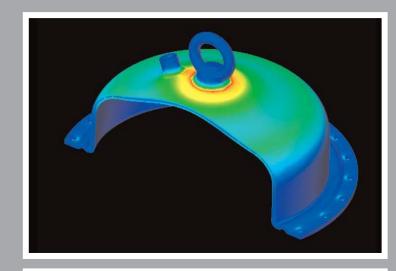
The optimising repair:

Of course, we can change the faulty component in a valve. A lot of people can do that. However, we can also optimise the internal components so that they last considerably longer. For example, by avoiding cavitation or flushing.

The life-prolonging modernisation plan:

We can develop a modernisation plan for you, which includes the valves and the pipework ducts. Because we build power station valves ourselves, we know the interplay of the components in detail. We know how to avoid costly new purchases by modernising existing valves. The spin-off: the power station can be quickly started up again.

The targeted spare parts stock:


We fill a special spare parts box for a specific part of your valves in each case as a preventative measure. It will be stored on your premises. If a fault occurs, the HORA Service Team can repair the valve immediately. Then we refill the spare parts box.

The Service Check:

Our Service Team checks all valves at regular intervals and assesses the repair requirements and optimisation potential.

The individual problem solution – An example:

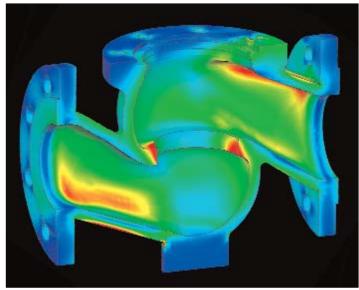
A plastics company asked a valve manufacturer to repair its valve which was about 30 years old. It was a 3-way valve of a quite specific design. The manufacturer had to decline and was also unable to supply a replacement valve with the same, non-standard connection dimensions. A new solution was ruled out: changing the pipework would have cost a fortune. Then HORA was approached. HORA produced the 3DCAD data and found a special foundry which specialised in styropor models. Styropor models can only be used once, but that was enough. Therefore, this foundry produced the first valve model in its history. The valve was cast and then finished and fitted by HORA. And so HORA gained a new customer.

Simply tell us your goals - we'll get you there.

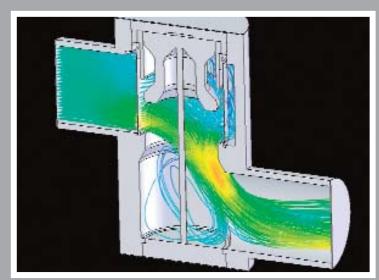
Increase in availability?

- We can do that for you:
- Strategic spare parts stockholding
- Utilisation of improved materials and technologies
- Preventative maintenance

Increase in output? We can do that for you:


- Modernisation of components and systems

Service life extension?


- We can do that for you:
- Status-orientated maintenance
- Service life analysis
- Changing specific components

Increase in efficiency?

- We can do that for you:
- Process data analysis
- Examination of valve design
- Modification of existing valve


Finite Element Method

Fluid calculation to optimize the valve parts

HORA Power Technology Service accom	npanies a power station at every stage of its life.
mentri ener recimency service accon	sipullies a power station at every stage of its me.

Periods	1	2	3
Phase	- Plant commissioning and start-up	 Plant economic phase Few and mostly planned shutdowns Maximum availability 	- The end of the service life of various components in the plant is reached
<i>Reasons for failure</i>	 Material faults Manufacturing faults Design faults 	- Random failures	- Failures due to fatigue and ageing
HORA Power Technology Service	 Commissioning by specialist personnel Training of on-site personnel Troubleshooting 	 Rapid troubleshooting on site Preventative maintenance Service life observation and service life increase Short planned shutdowns Spare parts stock on site 	 Modernisation Retrofit: changing components and component parts Upgrade: optimisation to the latest state-of-the-art technology Status-orientated maintenance

X-ray image of a cast-iron body with welded ends. Shrink holes and inclusions can only be detected with certainty in this way.

For all your Hora Needs:

- Control Valves
- Desuperheaters
- Steam Conditioning

For additional information contact:

Armour Valve 126 Milner Ave. Scarborough, Ontario Canada 416-299-0780 Fax: 416-299-0394 sales@armourvalve.com or visit us on-line www.armourvalve.com

Excellence is our standard